September 24, 2013

Office of Electricity
Delivery & Energy
Reliability

Results and Findings from the ARRA-Funded Smart Grid Projects

Joe Paladino
U.S. Department of Energy
3rd Great Lakes Symposium on Smart Grid and the New Energy Economy
September 22-25, 2013
Chicago, IL

1

Recovery Act Smart Grid Programs

Recovery Act Smart Grid Programs

- Smart Grid Investment Grants (SGIG)*
 - \$3.4 billion
- Smart Grid Regional Demonstrations (SGDP)*
 - \$620 million
- Workforce Training
 - \$100 million
- Interconnection-wide Transmission Planning and Resource Analysis
 - \$80 million
- Interoperability Standards (with NIST)
 - \$12 million
- Other
 - Technical Assistance to States (\$44 million)
 - Local Energy Assurance Planning (\$10 million)

One-time Appropriation \$4.5B of Recovery Act Funds Resource Assessment & **Smart Grid** Transmission Planning Interoperability Other Standards Workforce Training **Smart Grid** Demos **Investment Grants**

^{*}Originally authorized by the Energy Infrastructure Security Act 2007, EISA 1306 and EISA 1304

SGIG Deployment Status

*Number of entities: 99 Updated on September 5, 2013

Applications and Benefits Matrix

Benefits	Smart Grid Technology Applications					
	Consumer-Based Demand Management Programs (AMI- Enabled)	Advanced Metering Infrastructure (AMI) Applied to Operations	Fault Location, Isolation and Service Restoration	Equipment Health Monitoring	Improved Volt/VAR Management	Synchrophasor Technology Applications
	Customer devices (information and control systems)	 Meter services Outage management Volt-VAR management Tamper detection Back-Office systems support (e.g., billing and customer service) 	 Automated feeder switching Fault location AMI and outage management 	 Condition-based maintenance Stress reduction on equipment 	 Peak demand reduction Conservation Voltage Reduction Reactive power compensation 	Real-time and off-line applications
Capital expenditure reduction – enhanced utilization of G,T & D assets	✓			√	√	√
Energy use reduction	✓	✓	✓		✓	✓
Reliability improvements		✓	✓	✓		✓
O&M cost savings		✓	✓	✓		
Reduced electricity costs to consumers	✓				√	
Lower pollutant emissions	✓	✓	✓		✓	✓
Enhanced system flexibility – to meet resiliency needs and accommodate all generation and demand resources	✓	✓	✓	✓	✓	✓

CBS Project Evaluation Results: *OG&E*

	Residential VPP-CP (¢/kWh)	Number of days in summer 2011 at each price level
Low and off- peak	4.5¢ per kWh	63
Standard	11.3¢ per kWh	25
High	23.0¢ per kWh	28
Critical	46.0¢ per kWh	6
Critical Event	46.0¢ per kWh	7 (included in the above)

- Evaluation estimated average peak demand reduction of 1.3 kW/customer
- Based on study results, rolling out VPP- CP system-wide with participation goal of 20% by Dec. '14
- Study results show value in continuing to provide PCTs for free (2012) or discounted to join rate
- 70,000 customers (~10% of res. class) enrolled in VPP-CP rate as of July 2013 with high satisfaction

Value of Service from Improvements in Reliability

Selected example from an SGIG project reporting initial results

1 project involving 230 automated feeder switches on 75 circuits in an urban area From Apr 1 – Sep 30 2011

SAIDI improved 24%; average outage duration decreased from 72.3 to 54.6 minutes (17.7 minutes)

Estimated Average Customer Interruption Costs US 2008\$ by Customer Type and Duration						
Customer Type	Interruption Cost Summer Weekday	Interruption Duration				
		Momentary	<u>30 mins</u>	<u>1 hr</u>	<u>4 hr</u>	<u>8 hr</u>
Large C&I	Cost Per Average kWh	\$173	\$38	\$25	\$18	\$14
Small C&I	Cost Per Average kWh	\$2,401	\$556	\$373	\$307	\$272
Residential	Cost Per Average kWh	\$21.6	\$4.4	\$2.6	\$1.3	\$0.9

Sullivan J, Michael, 2009 Estimated Value of Service Reliability for Electric Utility Customers in the US, xxi

Estimated monetary value of this improvement in reliability based on value-of-service data is \$21 million

Applying Volt/VAR Optimization to Improve Energy Efficency

Conservation voltage reduction (CVR) reduces customer voltages along a distribution feeder for lowering peak demands and overall energy consumption

Example Using SGIG Project Data

Results averaged across 11 circuits	% Reductions	Potential savings for a 7 MW peak circuit with 53% load factor		
Customer Energy Reduction	2.9%	943 MWh/year	\$75,440 (at \$.08/kWh)	
Peak Demand Reduction	3%	210 kW	Defer construction of peaking plants	

Synchrophasor Technology for Transmission System Operations

DOE and NERC/NASPI are working together closely with industry to enable wide area time-synchronized measurements that will enhance the reliability of the electric power grid through improved situational awareness and other applications

Growth in Utility Data Analytics

Provides utilities ability to track, visualize and predict:

- Asset management
- Outage management
- Mobile workforce management
- Customer behavior
- Power flow management (real-time balancing)

Source: "The Soft Grid 2013-2020: Big Data & Utility Analytics for Smart Grid," GTM Research

Grid Modernization Investments

SGIG projects accelerate industry investment to achieve a modern grid

Chupka, M.W. Earle, R., Fox-Penner, P., Hledik, R. Transforming America's power industry: The investment challenge 2010 – 2030. Edison Electric Institute, Washington D.C.,: 2008.

For More Information

Contact: <u>joseph.paladino@hq.doe.gov</u>

Websites: <u>www.oe.energy.gov</u>

www.smartgrid.gov

Reports: SGIG Progress Report (July 2012)

Peak Demand Reductions – Initial Results (December 2012)

AMI O&M Savings – Initial Results (December 2012)

Reliability Improvements – Initial Results (December 2012)

Voltage Optimization – Initial Results (December 2012)

Economic Impact (April 2013)

Customer Enrollment Patterns in Time-Based Rate Programs (June 2013)

Synchrophasor Technologies and Their Deployment in Recovery Act Smart

Grid Programs (August 2013)

All reports are downloadable from:

http://www.smartgrid.gov/all/news/department energy releases smart grid impact reports